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Abstract

Echocardiography (echo) is a translationally relevant ultrasound imaging modality widely used to assess cardiac structure and
function in preclinical models of heart failure (HF) during research and drug development. Although echo is a very valuable tool,
the image analysis is a time-consuming, resource-demanding process, and is susceptible to interreader variability. Recent
advancements in deep learning have enabled researchers to automate image processing and reduce analysis time and inter-
reader variability in the field of medical imaging. In the present study, we developed a fully automated tool, mouse-echocardiog-
raphy neural net (MENN), for the analysis of both long-axis brightness (B)-mode and short-axis motion (M)-mode images of left
ventricle. MENN is a series of fully convolutional neural networks that were trained and validated using manually segmented B-
mode and M-mode echo images of the left ventricle. The segmented images were then used to compute cardiac structural and
functional metrics. The performance of MENN was further validated in two preclinical models of HF. MENN achieved excellent
correlations (Pearson’s r = 0.85–0.99) and good-to-excellent agreement between automated and manual analyses. Further inter-
reader variability analysis showed that MENN has better agreements with an expert analyst than both a trained analyst and a
novice. Notably, the use of MENN reduced manual analysis time by >92%. In conclusion, we developed an automated echocar-
diography analysis tool that allows for fast and accurate analysis of B-mode and M-mode mouse echo data and mitigates the
issue of interreader variability in manual analysis.

NEW & NOTEWORTHY Echocardiography is commonly used in preclinical research to evaluate cardiac structure and function.
Despite the broad applications across therapeutic areas, the analysis of echo data is laborious and susceptible to interreader
variability. In this study, we developed a fully automated mouse-echocardiography neural net (MENN). Cardiac measurements
from MENN showed excellent correlations with manual analysis. Furthermore, the use of MENN leads to >92% reduction in anal-
ysis time and potentially eliminates the interobserver variability issue.
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INTRODUCTION

Echocardiography (echo), an ultrasound-based noninvasive
imaging approach, is widely used as a diagnostic tool in the
clinic, as well as in preclinical research to assess cardiac struc-
ture and function in animal models (1, 2). In preclinical drug
discovery, this imaging modality is routinely used to assess
cardiac disease burden in animal models of heart failure and
to assess the cardiovascular safety of new drugs (1). It is a
high-throughput imagingmodality that is accurate, reproduc-
ible, easy to use, and affordable compared with other imaging
modalities such as cardiac magnetic resonance imaging, com-
puted tomography, or myocardial scintigraphy (3). Although
recent advancements in echocardiography imaging have

enabled clinicians to acquire cardiac images in three dimen-
sions and have improved the accuracy of cardiac structural
and functional readouts (4), two-dimensional echocardiogra-
phy (2-D echo) remains themost used technique in preclinical
heart failure research and drug development (1, 5).

To obtain reliable and reproducible information from echo-
cardiography that can be used to compare results between dif-
ferent laboratories, one needs to consider several factors,
which include type and depth of anesthesia, the mode of re-
cording, and sonographer experience in the analysis of pre-
clinical research (1, 6). Although the type and depth of
anesthesia and the mode of recording can be standardized,
observed variability due to analyst experience or subjective
bias in echo analysis is hard to control and standardize (7). As
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a result, it is challenging to compare echo readouts between
preclinical laboratories and reproduce data from one labora-
tory in another. The current workflow of 2-D echo analysis in
preclinical research requires manual tracing of endocardial
borders at end-systolic and end-diastolic frames using a pre-
set analysis tool/program to compute cardiac functional and
structural information. Although manual analysis is a simple
process, it is very time and resource-demanding. Its accuracy
depends on the analyst’s experience, and it is susceptible to
analyst bias and interreader variability (8). These drawbacks
of echocardiography imaging are not exclusive to preclinical
use but also exist in the clinic as well (7).

To address the limitations of manual echo analysis, sev-
eral clinical echo machine manufacturers have developed
algorithms to compute left ventricle (LV) indices on
brightness (B)- and motion (M)-mode echocardiography
images (9–13). The use of these automated tools in clinical
applications has been shown to improve accuracy, repro-
ducibility, and efficiency; thus, these types of tools are
slowly being adopted in clinics for echocardiography anal-
ysis (10). However, there is no fully automated tool for the
analysis of B- and M-mode echocardiography images in
preclinical research. Recently, FUJIFILM VisualSonics
Vevo LAB, a proprietary preclinical echo analysis tool,
released a software version with a semiautomated 2-D bor-
der detection algorithm (Auto2DE or AutoLV) for analysis
of left ventricle parasternal long-axis (PSLAX) images of B-
mode and parasternal short-axis (PSAX) images of M-
mode (14, 15). Similarly, VivoQuant, a proprietary image
analysis solution, released a semiautomated ultrasound B/
M-mode segmentation module for the analysis of mouse
echocardiography images (16). Notably, both these propri-
etary tools require an image analyst’s input to perform
analysis in their respective analysis tool. For example, an
analyst must manually open LV PSLAX B-mode images in
the Vevo LAB or the VivoQuant and navigate to the “R”
wave on a simultaneously recorded electrocardiogram or
select the region of maximum and/or minimum LV dilata-
tion on a cine loop to initiate automated tracing of the left
ventricular wall (14, 16). Although use of the Auto2DE or
AutoLV and VivoQuant tools significantly reduces left ven-
tricle (LV) wall tracing time, the amount of time an analyst
needs to spend on opening each individual echo image
and navigating through the cine loop to choose a section
of the loop for autotracing is still significant. The semiau-
tomated echo tool does not save much overall time on the
manual effort needed for echo analysis. Furthermore, the
accuracy of Auto2DE’s performance varies widely from
model to model, and the correlation of ejection fraction
(EF) from the Auto2DE to manual analysis output yields a
Pearson’s coefficient value of r = 0.33–0.67, depending on
the quality of the LV PSLAX B-mode images (14). There is a
need for a fully automated echo analysis tool that would
significantly reduce manual analysis time, improve accu-
racy, and eliminate observer variability in preclinical heart
failure models. Thus, the aim of this study was to develop
and validate a deep learning-based, fully automated echo
analysis tool for the analysis of LV PSLAX B-mode and
PSAX M-mode echo images of a mouse and to assess the
performance of this tool on models of dilated and hyper-
trophic cardiomyopathy in mice.

METHODS

Animal Models

All procedures involving animals were reviewed and
approved by Pfizer’s Institutional Animal Care and Use
Committee and conducted in an Association for Assessment
and Accreditation of Laboratory Animal Care International-
accredited facility. Mice [n = 653; male (n = 574) and female
(n = 79); age 8–35 wk; genetically engineered mouse models
or 129S1/SvlmJ (or C57BL/6NCrl)] were anesthetized using
isoflurane (3% for induction, 1%–2% for maintenance) or sev-
oflurane (6% for induction, 1%–4% for maintenance) for
echocardiography image acquisition. Approximately 90%–

95% of echo-image acquisition was performed under isoflur-
ane anesthesia, and �5%–10% of images were acquired
under sevoflurane anesthesia. Regardless of the type of anes-
thesia, heart rate was maintained between �400 and 550
beats/min during image acquisition. The method develop-
ment and validation work included echocardiography
images from a wide variety of disease models including
transverse aortic constriction (TAC), angiotensin II-induced,
renin overexpression plus NG-nitro-L-arginine methyl ester-
induced, high-fat diet-induced obesity (DIO), and genetic-
engineered models (GEMs) of heart failure (Supplemental
Table S1; all Supplemental material is available at https://
doi.org/10.6084/m9.figshare.20412552.v1).

Echocardiography Data

PSLAX B-mode and PSAX M-mode echocardiography
images of the murine left ventricle were taken either using
MX250S/MS-250S (center frequency, 21 MHz; frequency
band, 15–30 MHz; and axial resolution, 75 mm) or MX550D/
MS-550S (center frequency, 40 MHz; frequency band, 25–
55 MHz; and axial resolution, 40 mm) with a VisualSonics
Vevo 3100 or Vevo 2100 ultrasound machine (FUJIFILM
VisualSonics, Toronto, Canada) and exported fromVisualSonics’
Vevo LAB software in DICOM format. B-mode images consisted
of 300 frames capturing the left ventricle in motion (2-D þ
time).M-mode images consisted of 2–5 s of cross-sectional snap-
shots (1-D þ time) broken up into 10–40 frames.

Manual segmentation of the left ventricle was performed
by an expert analyst on 586 B-mode videos (33,133 frames)
and 976 M-mode images in FUJIFILM VisualSonics Vevo
LAB software. The boundary around the left ventricle was
manually drawn on the B-mode videos for two to six car-
diac cycles, and the software interpolated the boundary
for the remaining slices. The edges of the anterior and
posterior wall were manually drawn on the M-mode
images for a single frame capturing �1 s of M-mode acqui-
sition. From these segmentations, many metrics were cal-
culated including LV end-systolic and -diastolic area
(LVESA; LVEDA), LV end-systolic and -diastolic volume
(LVESV; LVEDV), and ejection fraction (EF) for B-mode,
and LV posterior and anterior wall thickness at systole
and diastole, LV mass, fractional shortening (FS), and
heart rate for M-mode.

Both B-mode and M-mode scans were exported in DICOM
format from the Vevo LAB software as described earlier and
cropped down to remove annotations so that only the B-
mode or M-mode image itself remained. For the ground-
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truth training data, the annotated images were then parsed
automatically to compute a segmentation label that could be
used for comparison with the automated result.

Segmentation of LV and Myocardial Wall

In the present study, a U-Net architecture (17) was repur-
posed to segment the left ventricle and myocardial wall on
both B-mode and M-mode images. Specifically, the B-mode
segmentation network was trained to perform a binary clas-
sification of every single B-mode frame into background and
left ventricle. B-mode frames (33,133) with manual annota-
tions were randomly split into a training (80%) set and a test-
ing (20%) set. Training was performed with a dice similarity
coefficient (DSC)-based loss function and an Adam opti-
mizer, using a batch size of 32 over 100 epochs or until early
stopping criteria wasmet. The 20% testing set was used inde-
pendently to obtain the dice scores. The early stopping crite-
ria is defined as when the DSC-based loss is no longer
decreasing for 10 consecutive epochs. The DSC is defined as
following:

DSC ¼ 2� jA\ Bj
jAj þ jBj

where jAj represents the area of manual segmentation, jBj
represents the area of auto segmentation, and jA\ Bj repre-
sents the comment area between the two segmentations. The
following parameters were used for the training optimizer:
learning rate = 0.0001, b1 =0.9, b2 =0.999, and ɛ = 0.0000001.

For M-mode, the segmentation network was trained in a
similar manner to the B-mode with a few exceptions. In this
case, a multiclass segmentation version of a U-Net was
trained to segment a single M-mode frame into background,
anterior wall, left ventricle interior, and posterior wall.
Training was performed on 976 M-mode images with an 80/
20 train-test split over 100 epochs or until stopping criteria
was met. The trained networks for both B-mode and M-
mode were subsequently further validated using two inde-
pendent data sets [the hypertrophic cardiomyopathy (HCM)
and dilated cardiomyopathy (DCM) data sets as defined in
the below section]. Performance was evaluated using dice
similarity coefficient and correlation of calculated LV met-
rics to manual analysis. All model training and testing were
done in Python using the TensorFlow deep learning library
with two NVIDIA GeForce RTX 2080 GPUs and 64 GB RAM.
The code for MENN is available at https://github.com/pfizer-
opensource/mouse-echo-neural-net.

LV Metrics Quantification

For B-mode, LV area was first computed from the segmen-
tation mask and the in-plane resolution (0.015–0.018 mm).
Often, the quality of ECG signals acquired during mouse
echo acquisition is poor. Thus, instead of relying on an ECG
signal to detect LV systolic and diastolic frames, the maxi-
mum and minimum LV area from the segmentation masks
were used to determine diastolic and systolic frames, respec-
tively. The LV area and length of the LV long axis were com-
puted throughout a cine loop over multiple cardiac cycles,
which eliminated interbeat variability issue. LV volumes (V)
were then calculated using the single-plane area-length
method (18, 19):

V ¼ 8
3
p� A2=L

in which A is the LV area and L is the LV long-axis length
measured as the line from the LV apex to the mitral valve
annulus. Systolic and diastolic cardiac phases were detected
based on a Gaussian-smoothed LV area-time curve, and end-
diastolic volume (LVEDV) and end-systolic volume (LVESV)
were calculated accordingly. EF was calculated using the av-
erage EDV and ESV across the entire B-mode video clip as
follows:

EF ¼ EDV� ESV
EDV

� 100%:

For M-mode, systolic and diastolic phases were first
detected based on the segmentation mask as shown in Fig. 1.
Both anterior and posterior LV wall thicknesses at end-sys-
tolic and -diastolic phases were then computed as the verti-
cal distance between the region boundary lines from the
segmentationmask. The vertical pixel resolution onM-mode
images ranges from 0.026 to 0.028 mm. Fractional shorten-
ing (FS) and the corrected LV mass (in mg) were computed
as follows (20, 21):

LVmass ¼ 1:503

� ½ LVID;d þ LVPW;d þ IVS;dð Þ3 � LVID;d3;

LVmass corrected ¼ 0:8� LVmass

in which LVID;d is LV diameter at diastole, LVPW;d is the
posterior LV wall thickness at diastole, and IVS;d is the ante-
rior LV wall thickness at diastole and

FS ¼ LVID;d� LVID;s
LVID;d

� �
� 100%

where LVID;d is LV diameter at diastole and LVID;s is LV di-
ameter at systole.

Deployment

For front-end use, a simple graphical user interface was
designed in Python’s Tkinter toolbox to take as an input a
folder path containing both B-mode and M-mode DICOMs.
Mouse-echo neural net (MENN) then parsed B-mode and
M-mode images, fed each into their respective model for
segmentation, and saved a .csv of the various metrics cal-
culated from the segmentation of each image, as well as
a .pdf containing snapshots of the automated segmenta-
tions for quality control (QC) purposes. A schematic represen-
tation of the automated analysis workflow can be found in
Supplemental Fig. S2.

Performance of the Automated Analysis Tool on Heart
Failure Models

Regardless of disease etiology and induction method,
most preclinical heart failure models show structural change
either as dilated cardiomyopathy or hypertrophic cardiomy-
opathy. Thus, the performance of the fully automated echo
analysis tool was assessed on genetically engineered mouse
models of dilated cardiomyopathy (DCM) and hypertrophic
cardiomyopathy (HCM). The cardiac-specific B-cell lym-
phoma (BCL)-2-associated athanogene (BAG3) knockout
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animals show an age-dependent decline in cardiac function
and left ventricular dilatation (22). Thus, for the evaluation of
performance of the tool on a DCMmodel, LV PSLAX B-mode
(n = 102) and PSAX M-mode echo images (n = 100) from a
mixed cohort of cardiac-specific BCL-2-associated athano-
gene (BAG3) knockout (70%) and littermate control (30%)
animals were used to compare key echo readouts (EF, FS,
LVESV, and LVEDV) between the MENN output and manual
analysis. The cardiac-specific myosin-binding protein-C
(MYBP-C) knockout animals show a severe cardiac hypertro-
phy phenotype with increased LV wall thickness (23). For the
evaluation of the performance of MENN on an HCM model,
LV PSLAX B-mode images (n = 103) and PSAX M-mode
images (n = 98) from a mixed cohort of MYBP-C3 knockout
(45% KO) and littermate or background strain control ani-
mals (55%) were used to compare key echo readouts [EF, FS,
left ventricle anterior wall thickness (LVAW), left ventricle
posterior wall thickness (LVPW), and LV mass corrected]
between the automatedanalysis output andmanual analysis.

Statistical Analysis

Statistical analysis was performed using Graph Prism 9
(Graph Pad Software, La Jolla, CA). Normality of the echo
variables was evaluated using a Shapiro–Wilk test and a
quantile-quantile (QQ) plot. All variables are normally dis-
tributed or approximately normally distributed (see QQ plots
in Supplemental Fig. S1). For each echo readout, the compar-
ison between automated and manual outputs included lin-
ear regression with Pearson correlation coefficients and
Bland–Altman analyses to assess the bias and limits of agree-
ment (defined as means ± 2SD). In addition, consistency and
agreement between various echo readouts were compared
using intraclass correlation (ICC).

RESULTS

Semantic Segmentation

Deep convolutional neural networks were used to perform
semantic segmentations on both B-mode and M-mode
images. For B-mode, MENN was evaluated on a test set of
7,015 frames or 117 B-mode videos. Figure 2 shows a direct
comparison between the deep learning model’s automated
segmentations (green) and an expert user’s manual segmen-
tations (red) of the left ventricle in several representative B-
mode frames. Overall, when comparing with themanual seg-
mentation done by a subject matter expert (SME), the dice
index is 0.9245. Similarly, MENN was compared against
manual segmentation on a test set of 129 M-mode scans.
Figure 2B shows the direct comparison between the model’s
automated segmentations (green) and the expert user’s man-
ual segmentations (red) for representative scans. Overall, the
segmentation had a pixel accuracy for all four regions (back-
ground, anterior wall, LV, and posterior wall) for the testing
data set of 0.9563.

Comparison of LV Metrics

Following the segmentations, LV metrics were computed
for both B-mode and M-mode data. The LV metrics, includ-
ing EF, LVESV, LVEDV, LVESA, and LVEDA, computed on
B-mode images, showed excellent correlation (Pearson’s r
ranges from 0.93 to 0.98) between automated and manual
analysis (Fig. 3). Furthermore, Bland–Altman analysis
showed good agreement between auto and manual EF,
LVESV, LVEDV, LVESA, and LVEDA with bias of�4.69, 1.02,
�3.10, 0.47, and�0.70, respectively.

Similarly, the comparison of LV metrics such as fractional
shortening (FS), posterior LV wall thickness at systole

Figure 1. Echo analysis workflow. A: for each long-axis B-mode echo video, semantic segmentations were performed for each frame using a convolu-
tional neural network. The segmentation results were then processed to obtain left ventricle (LV) areas and volumes. The LV area-time curves were then
smoothed to identify systolic and diastolic frames, which were used later for the computation of all B-mode cardiac metrics. B: for each short-axis M-
mode image, semantic segmentation was performed to identify four regions: background (purple), anterior wall (blue), left ventricle (green), and posterior
wall (yellow). Postprocessing was then applied to the segmentation mask image to identify region boundaries and detect systolic and diastolic phases.
echo, echocardiography; LAX B mode, long-axis brightness-mode; SAX Mmode, short-axis motion-mode.
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(LVPWs), posterior LV wall thickness at diastole (LVPWd),
anterior LV wall thickness at systole (LVAWs), anterior LV
wall thickness at diastole (LVAWd), and corrected LV mass
computed from M-mode images showed excellent correla-
tion between the automated and manual segmentation out-
puts (Fig. 4). The Bland–Altman analysis showed good
agreement between auto and manual FS, LVPWs, LVPWd,
LVAWs, LVAWd, and LV mass corrected with bias of 3.85,
�0.70, �0.01, �0.04, �0.01, and �4.73, respectively (Fig. 4).
Note that, in general, M-mode-binding measurements are
considered less reliable than B-mode-basedmeasurements.

Evaluation of the MENN Tool in Heart Failure Models

The MENN echo analysis tool was then further tested with
data collected from two heart failure models: DCM and
HCM. The data frommixed cohort of the DCMmodel (Fig. 5)
showed an excellent correlation between MENN andmanual
analysis done by an expert (Pearson’s r = 0.93, 0.91, 0.99, and
0.97, respectively) for LV ejection fraction (LVEF), FS,
LVESV, and LVEDV. Bland–Altman analysis revealed a bias
of�7.5 ±4.1 for LVESV, �11.4±5.7 for LVEDV, and �13.6±6.2
for FS, suggesting consistent underestimation of LV volumes
and FS by MENN compared with manual analysis (Fig. 5).
However, despite the negative biases, the strong correlation
for EF and FS between MENN and manual analysis suggests
that this underestimation of absolute volume will not signifi-
cantly affect the assessment of systolic function. Similarly,
the data from amixed cohort of the HCMmodel (Fig. 6) dem-
onstrated a good correlation between MENN and manual
analysis performed by an SME for LVEF, FS, and corrected
LV mass (Pearson’s r = 0.80, 0.91, and 0.97 respectively). As
with the DCM model, the Bland–Altman analysis revealed a
bias of�11.28 ± 7.2 for FS in HCMmodels, suggesting consist-
ent underestimation of FS with MENN compared with man-
ual analysis. Although the absolute FS values do not match
perfectly, the correlation was excellent between MENN and
manual analysis, again suggesting that the underestimation

of absolute FS did not affect the assessment of cardiac func-
tion in this model.

Analysis Efficiency and Interobserver Variability

To evaluate the time saved by using MENN, the time
required to analyze a sample data set containing PSLAX B-
and PSAX M-mode images of the LV of 32 mice (normal,
HCM, and DCM) and report the data were compared between
MENN, an expert, a trained analyst, and a novice. The aver-
age time required to performmanual analysis of both PSLAX
B- and PSAX M-mode LV images and report results was 5.27
min/animal for an expert, and 8.33 min/animal for a trained
analyst. Meanwhile, it took less than 0.4 min/animal for
MENN (potential QC time considered). Notably, there was
no manual supervision needed during MENN analysis.
Overall, more than 92% less time was required for the analy-
sis of echo images from a single animal per time point com-
pared with the time required by an expert for analysis.

In addition to increased efficiency in echocardiography
analysis, EF data showed far better correlation between
MENN and expert analysis compared with expert versus
novice or expert versus trained (Fig. 7). The interreader con-
sistency and agreement of EF values are higher between
expert analysis and MENN compared with expert versus
novice analysis (Table 1). Importantly, the MENN analysis
showed no intraobserver variability when analyzing the
same images twice. Use ofMENN eliminates intra- and inter-
observer bias from echo analysis. Overall, these results sug-
gest that MENN’s analysis output values show excellent
agreement with expert analysis.

Image Segmentation Failure Rate

The performance of the MENN tool depended on the qual-
ity of the echo image. During theMENNperformance analysis,
�5%–6% of PSLAX B-mode and 10%–11% of PSAXM-mode LV
images failed QC because of poor segmentation. These seg-
mentation failures are primarily due to poor image quality,

A B

Figure 2. Representative B-mode (A) and M-mode (B) images of left ventricle (LV) with manual (red) and automated (green) tracing of the internal LV wall
(B-mode) and the anterior, internal, and posterior walls (M-mode). Yellow pixels indicate an overlap in the manual and automated segmentations. B
mode, brightness-mode; LVAW, left ventricle anterior wall thickness; LVPW, left ventricle posterior wall thickness; M mode, motion-mode.
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which includes the presence of rib shadowing or motion arti-
facts, or an improper image acquisition plane (Fig. 8). These
results suggest that the quality of echo images is para-
mount to reduce image segmentation failures and increase
the success of the MENN analysis tool’s performance.

DISCUSSION

Echocardiography is commonly used in preclinical research
to evaluate cardiac structure and function for various

cardiovascular disease models including dilated cardio-
myopathy and hypertrophic cardiomyopathy. In addi-
tion, echo is often used to monitor safety and assess
cardiotoxicity in drug research and development. Despite
the broad applications across therapeutic areas, the anal-
ysis of echo data, which includes outlining heart cham-
bers over a cardiac cycle, is laborious. The manual
outlining process is also susceptible to interreader vari-
ability. In this study, we developed and validated a fully
automated mouse-echocardiography neural net (MENN)
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Figure 3. Comparing the mouse-echo neural net against expert manual analysis on left ventricle (LV) indications from long-axis (PSLAX) B-mode images
(n = 134). Correlations between the manual user (y-axis) and the automated tool (x-axis) for ejection fraction, LV systolic and diastolic area (LVESA and
LVEDA, respectively), and LV systolic and diastolic volume (LVESV and LVEDV, respectively) are shown in A, B, C, G, and H, respectively. The corre-
sponding Bland–Altman plots are shown in D, E, F, I, and J, respectively. A simple linear regression line is plotted for each correlation graph, with the
equation and correlation value in the top left corner, and a 95% confidence interval (CI) is plotted for each Bland–Altman plot, with the bias shown in the
top left corner. B mode, brightness-mode; echo, echocardiography; LVEDA, LV end-diastolic area; LVEDV, LV end-diastolic volume; LVESA, LV end-sys-
tolic area; LVESV, LV end-systolic volume; MENN, mouse-echocardiography neural net; PSLAX, left ventricle parasternal long-axis.
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using deep learning. The performance of MENN on both
PSLAX B- and PSAX M-mode images from mouse DCM and
HCM models showed an excellent correlation between auto-
mated output and manual analysis. Furthermore, the use of
MENN analysis showed more than 92% reduction in echocar-
diography analysis time and potentially eliminated the con-
cern of intraobserver and interobserver variability.

Deep learning models have been increasingly used for
medical image analysis in both the research setting and the

clinic (24–27). In the clinical cardiovascular imaging space,
there has been a surge in successful deep learning applica-
tions thanks to the availability of large numbers of images
with annotations. This is particularly true for echocardiogra-
phy since it is often the first-line imaging modality used for
assessing cardiovascular disease due to its low cost and wide
availability. For example, Madani et al. (28) developed a con-
volutional neural network to classify transthoracic echocar-
diogram views as this is often the first step toward
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Figure 4. Comparing the mouse-echo neural net against expert manual analysis on left ventricle (LV) indications from short-axis (SAX) M-mode images
(n = 128). Correlations between the manual user (y-axis) and the automated tool (x-axis) for fractional shortening, corrected LV mass, systolic and diastolic
anterior wall thickness (LVAWs and LVAWd, respectively), and systolic and diastolic posterior wall thickness (LVPWs and LVPWd, respectively) are shown
in A, B, C, G, H, and I, respectively. The corresponding Bland–Altman plots are shown in D, E, F, J, K, and L, respectively. A simple linear regression line is
plotted for each correlation graph, with the equation and correlation value in the top left corner, and a 95% CI is plotted for each Bland–Altman plot, with
the bias shown in the top left corner. CI, confidence interval; echo, echocardiography; LVAWs, LV wall thickness at diastole; LVPWd, posterior LV wall
thickness at diastole; LVPWs, posterior LV wall thickness at systole; MENN, mouse-echocardiography neural net; M mode, motion-mode.
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comprehensive automated analyses. Their model achieved
97.8% accuracy in classifying 12 video views without overfit-
ting. Ghorbani et al. (29) developed a deep learning model,
EchoNet, that can accurately identify local cardiac structures
and estimate cardiac function. Specifically, they have shown
that EchoNet is able to measure left ventricular end-systolic
volume (R2 = 0.74), LV end-diastolic volume (R2 = 0.70), and
EF (R2 = 0.50). Furthermore, Ouyang et al. (30) proposed a
video-based deep learning algorithm, EchoNet-Dynamic,
that accurately segments the left ventricle with a DSC of 0.92
and measures LVEF with a mean absolute error of 4.1%.
Those applications demonstrated that the latest advances in
deep learning techniques, together with increasing high-
quality, annotated imaging data, can help to improve image
analyses in both research and clinical practices.

Although numerous deep learning applications have been
developed for analysis of echocardiograms, most are designed

for use in the clinic. Echocardiography is also widely used to
evaluate animal models of disease both in academic research
and in drug R&D in the pharmaceutical/biotech industry,
however, there is a lack of fully automated preclinical analysis
applications, which would undoubtedly benefit researchers in
terms of data generation rate, accuracy, and reproducibility.
Damen et al. (31) used machine learning to predict left ven-
tricular wall boundaries in murine four-dimensional (4-D)
ultrasound data. In the present study, we developed a fully
automated echo analysis system (i.e., MENN) for both B-
mode andM-modemouse echo data based on theU-Net archi-
tecture. This network architecture was adopted in the current
work because of several advantages compared with other
approaches (32–34). First, it was created specifically for bio-
medical image segmentation problems (17), thus no major
structure modification is needed for adapting it to echo data.
Second, it has exhibited great performance in a wide range of
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Figure 5. Performance of the mouse-echo neural net on echo images taken from the mixed cohort of DCM model (n = 102 for B-mode images, n = 100
for M-mode images). Correlations between the manual user (y-axis) and the automated tool (x-axis) for ejection fraction, fractional shortening, and left
ventricle systolic and diastolic volume (LVESV and LVEDV, respectively) are shown in A, B, C, and G, respectively. Ejection fraction, systolic volume
(LVESV), and diastolic volume (LVEDV) were all computed from B-mode images, whereas fractional shortening was computed from M-mode images.
The corresponding Bland–Altman plots are shown in D, E, F, and H, respectively. A simple linear regression line is plotted for each correlation graph,
with the equation and correlation value in the top left corner, and a 95% CI is plotted for each Bland–Altman plot, with the bias shown in the top left cor-
ner. B mode, brightness-mode; CI, confidence interval; DCM, dilated cardiomyopathy; echo, echocardiography; EF, ejection fraction; FS, fractional short-
ening; LVEDV, LV end-diastolic volume; LVESV, LV end-systolic volume; MENN, mouse-echocardiography neural net; M mode, motion-mode.
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medical image segmentation applications (35). Third, it works
with a relatively small amount of annotated training data (35).
Amajor limitation of any deep learning technique is computa-
tional power, especially for medical image analysis where it
demands performance with minimal error. The latest advan-
ces in deep learning techniques such as transfer learning (36)
and EfficientNet (37) can be applied to alleviate this challenge.

Although none of the existing clinical echo automation
tools have been evaluated in different heart pathology condi-
tions (12), it has been reported that the performance of pre-
clinical semiautomated echo analysis tools depends on the
pathology of heart failure models (14). For example, correla-
tion analysis of EF between manual and Auto2DE showed
Pearson’s r value of �0.13 and 0.94 for a streptozotocin-
induced type-1 diabetes model and a transverse aortic con-
striction (TAC) model, respectively (14). In contrast, the per-
formance of the MENN tool on analyzing B- and M-mode LV
images from DCM and HCM models showed a good correla-
tion for key LV metrics between automated and manual
analysis outputs. This better performance of theMENN anal-
ysis tool may be due to the fact that the tool’s segmentation
library has been built and trained using a large set of labeled
images from a wide variety of disease models including TAC,
angiotensin II-induced heart failure, and diet-induced obe-
sity models. Although strong correlations were observed
between MENN and manual analysis outputs, the Bland–
Altman analysis revealed consistent negative bias on abso-
lute values for LVESV, LVEDV, and FS during the tool per-
formance evaluation. This may be because of a difference in
the approach the tool uses to compute LV systolic and dia-
stolic volume compared with the proprietary tool, which was
used for manual analysis. The MENN analysis tool computes
LV volume based on averaged maximum and minimum LV
volume from a PSLAX B-mode cine loop as diastolic and sys-
tolic volumes. However, during manual analysis, the analyst
identifies diastolic and systolic frames within the PSLAX
cine loop, then the tool provides output based on diastolic
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and systolic frame selection. Nevertheless, despite the nega-
tive bias on the absolute values, it should not significantly
affect the evaluation of LV function in a typical longitudinal
study because of the high correlations. It is worthwhile to
note that the difference between disease cohorts might also
be a contributing factor to the varying level of bias in differ-
ent metrics (both positive and negative).

A typical preclinical echo-image acquisition workflow
involves acquisition of either PSLAX LV B-mode, PSAX LV
M-mode, or both. Ideally one needs an analysis tool that can
perform automated analysis on both B- and M-mode images
of the LV to improve analysis efficiency and reduce manual
input. Although a proprietary semiautomated analysis tool
(Auto2DE or AutoLV) has been developed by FUJIFILM
VisualSonics to improve preclinical echo-image analysis, the
tool’s performance has been evaluated only on PSLAX B-
mode images of rodents (14), but there is a lack of published
reports on the performance of the FUJIFILM VisualSonics
Vevo LAB AutoLV feature on mouse models of heart failure.
Like FUJIFILM VisualSonics Vevo Lab, the latest version of
VivoQuant offered a semiautomated B/M-mode segmenta-
tion module. The performance of this tool has been eval-
uated only on six wild-type or normal mice under control
and pharmacological challenge conditions, but its perform-
ance has not been thoroughly evaluated either on dilated or
hypertrophic cardiomyopathy models. Notably, both these
proprietary tools require an analyst to open each individual
PSLAX B-mode and PSAX M-mode images for semiauto-
mated tracing of the LV wall (14, 16). Although these semiau-
tomated echo analysis tools reduce the time that would
otherwise be spent on manual tracing of the LV wall during
B-mode image analysis, the time and manual input that is

required to open each individual image to run this analysis
and generate this report is still significant. In contrast,
MENN is a fully automated echo analysis tool with the abil-
ity to run batch analysis on both B-mode and M-mode
images of the mouse LV without requiring any manual
input. Since there is no manual input required during analy-
sis, the MENN tool saves >92% of analysis time compared
with a conventional approach.

It has been widely known that echocardiography analysis
in both preclinical and clinical imaging is susceptible to
inter- and intraobserver variability, and that these observer
variabilities vary depending on operator experience. Use of
automated echo analysis tools in the clinic has significantly
reduced inter- and intrareader variabilities (9, 10) and
improved echo analysis. An encouraging report from Grune
et al. (14) shows that the use of the Auto2DE tool reduced
inter- and intraobserver variabilities in manual analysis of
mouse echo images. However, the authors did not evaluate
the performance of Auto2DE in relation to expert and novice
analysts. EF values calculated by MENN had a stronger cor-
relation to an expert than those calculated by a novice. In
addition, performing automated analysis on the same image
twice using MENN yields the same results, and therefore
MENN reduces inter- and intraobserver variability in echo
data analysis.

The accuracy of echo-image analysis depends on the qual-
ity of echo images as well as whether the analysis is per-
formed manually or using an automated method (14, 38). If
the echo-image quality is poor due to motion artifact or rib
shadowing, it would be challenging for a manual analyst to
trace the LV wall. Thus, it is not surprising to see most of the
segmentation failures that occurred during MENN analysis
were due to poor image quality. One of the advantages of
using the MENN analysis tool is that the tool generates seg-
mentation image files that can be reviewed for QC purposes
(Supplemental Fig. S2). This feature of the tool enables an
analyst to reanalyze failed images using a manual approach
(�90%) or choose to exclude a given image from the analysis
(�10%), depending on its quality.

Althoughmousemodels of myocardial infarction (MI) and
arrhythmia and rat models of heart failure are commonly
used in preclinical research, the performance of MENN has
not been evaluated on these models. The MENN tool needs
to be evaluated on mouse MI models and rat heart failure
models in future studies.

Rib shadow
Poor resolution

 on posterior wall
Papillary muscle 

in PSAX view

Figure 8. Examples of image quality affecting the MENN tool segmentation. MENN, mouse-echocardiography neural net; PSAX, parasternal short-axis.

Table 1. Comparing consistency and agreement of EF
between expert vs. novice, expert vs. trained, and expert
vs. automated analysis

Ejection Fraction

ICC (1) consistency

(95% CI)

ICC (2) agreement

(95% CI)

Expert vs. novice 0.86 (0.73–0.93) 0.86 (0.54–0.95)
Expert vs. trained 0.92 (0.84–0.96) 0.92 (0.84–0.96)
Expert vs. automated 0.91 (0.82–0.95) 0.91 (0.43–0.97)

Values are correlation values (95% confidence intervals); n = 30
sample size. EF, ejection fraction; ICC, intraclass correlation.
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In conclusion, the fully automated mouse-echo analysis
tool (MENN) generates cardiac LV metrics consistent with
manual analysis, reduces analysis time by more than 92%,
and increases the accuracy of echo analysis by eliminating
inter- and intraobserver variability.
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